
Research
Non-Linear Mechanics in Hydrogels
Our group is interested in hydrogel systems that show novel mechanical behaviour as a function of stress and strain. Using supramolecular building blocks, interesting properties can arise, such as plasticity and strain stiffening. These molecules allow for the exploration of these properties in a synthetic context; whereas, they are normally reserved for biological samples.

Fibrillar hydrogel encapsulated in GUV (~40um diam.)
Synthetic Catch Bonds
Catch bonds involve a counterintuitive, yet crucial, phenomenon observed in biology. These bonds, of which the lifetime is increased when subjected to a tensile force, allow, for instance, white blood cells to stick to tissues to treat an infection despite the high shear due to blood flow.
Replicating this behaviour with the help of supramolecular chemistry, at both the molecular and macroscopic level, is one of the axes of research of the group, and could pave the way to materials with innovative mechanical properties and a better understanding of the mechanical behaviour of these supramolecular bonds.
![E. Coli bacterium with its Catch-Bonding filaments. [Gross L (2006), PLoS Biol 4(9): e314]](dynamic/image/32d197055f5390cddaeee6f8bf26857044ef3702e5426e85b10d2855245a66c4/width:576/height:480/E-Coli-bacterium-with-its-Catch-Bonding-filaments-Gross-L-2006-PLoS-Biol-49-e314.jpeg)
E. Coli bacterium with its Catch-Bonding filaments. [Gross L (2006), PLoS Biol 4(9): e314]

Self-Assembly of Molecular Actuators
This research topic is inspired by natural polymerisation motors and their role in cytoskeletal mechanics. We are focused on the study of active molecular systems organised in hierarchically structured materials and their emerging anisotropic stimuli-responsive behaviour. Specifically, we are interested in exploring the fundamental role of supramolecular architectures in mediating energy transduction.
Controlling Responsive Cyclic Peptides
Using the versatile cyclic peptide scaffold, functionalised by different stimuli-responsive side groups, the topology of the assembly and the extent thereof can be controlled. This allows for highly complex mechanical behaviour to emerge. This line of research involves such substrates, with the goal of mimicking biological force production mechanisms such as Brownian Ratcheting, Power Stroke Mechanism, Hill's Biased Diffusion etc.
